PrairieLearn Implementation for
CPR E 288

FINAL REPORT

Group Number: 33
Client: Philip Jones
Advisor: Philip Jones
Scrum Master: Carter Murawski
Consultant: Matt Graham
Quality Assurance: Chris Costa
Project Manager: Tyler Weberski
Technical Lead: Mitch Hudson
Construction: Andrew Winters

Email: sdmay24-33@iastate.edu

Website: https://sdmay24-33.sd.ece.iastate.edu/

Revised: 4/25/24 Version 1

mailto:sdmay24-33@iastate.edu
https://sdmay24-33.sd.ece.iastate.edu/

Final Report
Introduction/Background
e Problem statement
e Intended users and uses
e Place work in the context of related products
Revised Design
Functional Requirements
Security Requirements
Non-Functional Requirements
Ul Requirements
Performance Requirements
e Engineering standards
e Security concerns and countermeasures
e Description of how your design has evolved since 491
Implementation Details
Testing
e Process
Unit Testing
Interface Testing
Integration Testing
System Testing
Regression Testing
Acceptance Testing
Security Testing
Black & White Box Testing
e Results
Broader Context
Conclusions
Appendix 1 - Operation Manual
Set-Up
Demo
Testing
Appendix 2 - Alternative/Initial Version of Design
Appendix 3 - Other Considerations
Appendix 4 - Code

© © 000 0O NNNNNOOOOGDOO PP PRPOWWLWWLWWWWW-

A A A 3y 4 A A A
W W N -0 0 0O o

Introduction/Background

e Problem statement

Our project is to make a more intuitive and engaging learning experience using the PrairieLearn
Framework for students in the CPR E 288 course. Our project will need to create a new course with
new customizable and randomized questions, where students can answer the questions and have
them auto-graded once submitted.

e Intended users and uses

Professor Jones and the CPR E 288 classes benefit from our project, as they would use our results to
have an alternative to their homeworks with the autograder.

An instructor needs to be able to create courses for students to register for. The instructor must be
able to add exams and homework assignments. The instructor must be able to create questions for
both the exams and homework assignments they create.

A student must be able to register for a course. In this course, a student must be able to complete
exams and homeworks assignments assigned to them by the instructor. The student should be able
to see the grades they receive on these exams and homework assignments.

e Place work in the context of related products

The PrairieLearn software competes with products like Canvas, Gradescope, and Renaissance. The
way PrairieLearn sets itself apart and why we used their open-source project is the highly
customizable autograding features, especially for higher-level education. We developed a baseline
for c-autograding and general questions. On top of this, our development of an emulated
microcontroller can be integrated into PrairieLearn, which allows for intuitive randomized learning
for students to learn along with their labs.

Revised Design

Functional Requirements

Questions must be autograded as much as possible

Must have questions and assignments for each existing assignment in the course
Organize students into sections and semesters for easy grading

Connect with ISU’s existing Okta SSO for easy log-ins

Connect with Canvas to let students see grades immediately

Integrate an emulator for running student bot code in a virtual environment

Security Requirements

The firewall should prevent undesired access to the system
SSH needs to be secured to prevent unauthorized access to the system
Traffic between the users and the server must be encrypted and protected from
modification

e User-submitted code should be sandboxed to prevent it from affecting the system as a
whole

e The load balancer should protect the system from undesired downtime

Non-Functional Requirements

Updating questions should be easy and pain-free for TAs and instructors
Assignments should load quickly

Questions should be intuitive and understandable

Grading should be efficient and give feedback in a reasonable time frame
Grading feedback should be understandable and helpful to the student.

Ul Requirements

e Pages should adhere to existing web standards
e Ul should be easy to use and intuitive for new users
e Web pages and interfaces should be visually appealing

Performance Requirements

e The system should be able to handle at minimum 30 consecutive users compiling code.
e The system should have less than 5% downtime.

Engineering standards

IEEE 610 Standard Glossary of Software Engineering Terminology - Having technical terms for
ourselves to communicate, as well as future groups to use, will be essential to speeding up specific
processes rather than describing what should be known when attempting to further this project

IEEE 830 Software Requirements Specifications - This standard is heavily involved with what we are
doing now, finding out the different functional and nonfunctional requirements and the use cases.

IEEE 1016 Software Design Description - Throughout our process, documenting our designs
specifically within the Prairie-Learning work will be critical as the Ul look and functionality will
need various documentation aspects.

IEEE 1074 Software Development Life Cycle - Going through any of the lifecycle models will be
essential for the flow of the project. Although we don’t have a specific lifecycle model set yet, it will
be decided soon to have a fluid project when software development starts.

[EEE 2050 RTOS for embedded systems standard - Using this standard is with the various topics we
will need to cover from the CPR E 288 Intro to Embedded Systems class.

Programming Languages: Python, Javascript, C - These languages will be the main focus of our
software development, and being comfortable with all 3 will be vital to the success of the team.

Security concerns and countermeasures

Our project is entirely software-based, which means the only risks we need to contend with are

performance targets, availability requirements, and the functionality of our tools. Since our project
uses docker containers for compiling and simulating code, the server would need to be fast enough
to accommodate several classes’ worth of students at a time. We also need to ensure the server has

as little downtime as possible to allow students to work on labs and assignments at all times,
especially near due dates. The last risk we could have is PrairieLearn, or the emulator could fail to
meet specifications and will not work for what we need it to do.

The performance risk will be relatively low, probably around .1, since PrairieLearn is a mostly
client-based web framework that doesn’t take much processing power on the server side beyond
autograding. The availability risk should be around .2 because we can set up multiple servers as
redundant backups for when downtime is needed. Finally, the risk of tools not meeting
expectations is probably around a .4, considering no team member has experience with them.
Thanks to that risk, our mitigation plan is to do some market research for tools that may be better
suited to our needs. Using that research, if we ever find out PrairieLearn cannot fulfill our needs, we
can quickly find a tool to fill that area in.

Description of how your design has evolved since 491

Since 491, we have completed homework 1 through 12 with all questions Implemented. These
questions now range from fully randomized and auto-graded fill-in-the-blank to writing C code that
is submitted and auto graded. The server is now fully operational with the security implemented.
We have created documentation and videos detailing how to implement all of the work we have
done. We also integrated Okta sign-ins to allow students to sign in to PrairieLearn with their school
accounts. Finally, we created emulators using a modified Wokwi emulator for the Raspberry Pi Pico
and a custom-built board implementation for QEMU. The two emulators allow code to be executed
on the server as though it was running on the microcontroller board.

Implementation Details

Server
Docker
SSH - Container
| (PrairieLearn)
A
SSH -
Port 22 N Container
HTTP (Autograder)
Port 3000
Container
> (Autograder)
UFW
(Firewall) HTTP
Port 80 1 N Container
Network Traffic Open Ports: 301 Redirect (Autograder)
22
80 NGINX
443 | ,| Container
HTTPS (Autograder)
Port443

Figure 1. Design Diagram

In this matured design, we have a cemented view of the overall system design. Several servers will
be set up, as shown above, and each will be behind a load balancer that ensures no single server is
being overloaded.

What led to this iteration was a thorough understanding of the requirements for PrairieLearn and
research into the design of production servers. The significant change from Design o is the addition
of security features. These include the firewall, Nginx, and SSH security changes. The firewall
prevents connections from any port except 22 (SSH), 8o (HTTP), and 443 (HTTPS) and fulfills the
security requirement for the firewall. Port 22 is handled by the SSH daemon, and ports 8o and 443
are handled by Nginx. Nginx was added to provide encrypted traffic between the user and the server
through HTTPS on port 443, fulfilling that security requirement. This traffic is then internally
routed to the Docker container running the PrairieLearn server. Setting it up this way allows us to
utilize the robust security and efficiency provided by NGINX while still using PrairieLearn’s server.
SSH is how we, as the developers, access the server for things like maintenance and updates. We
added multi-factor authentication and public key authentication to protect this important part of
the server. These changes fulfill the security requirements related to connecting and accessing
server resources.

The docker containers running the autograders are used for sandboxing user code. Sandboxing
protects the system from user-submitted code that might be dangerous and fulfills that security
requirement. Thanks to Docker, multiple autograder containers can run simultaneously, helping
handle multiple users at once and fulfilling the performance requirements. The autograder
containers perform all of the autograding tasks, and the PrairieLearn container runs PrairieLearn. A
lot of our functional requirements are built into PrairieLearn, such as organizing sections, creating /
modifying questions, and displaying pages in visually appealing ways.

Since 491, we have also implemented new Docker images for running student code using the
emulators. This was used to create homework assignment 12, which focused on teaching students
how to write ARM assembly code. Having it run with the emulator means that the assembly code
can be emulated perfectly as though it were running on an actual ARM processor, and all of the
functionality for the microcontroller board is also implemented.

Testing
e Process
Unit Testing

For our project, the ‘units’ being tested are the individual questions and the emulator. The
questions are tested within PrairieLearn, where they are compiled and previewed. The built-in
grading system allows us to test and ensure the questions work as intended. The emulator was
testing by testing a variety of user inputs and comparing them to the expected results. Most tools
are built into the PrairieLearn framework as files and questions that can be edited directly through
the web interface. We also test our units by showing them to our advisor at each weekly meeting to
ensure they look and function as he wants. He has also helped with making sure the material is
correct, as the homeworks we are implementing was created by him.

Another set of unit tests is the auto grader Docker containers. Since each question will create a new
container to auto-grade, we can test whether the grading works as intended. To do this,
PrairieLearn provides a helpful interface for working with the grader containers and testing their
functionality. For example, if a compilation error shows up, it will be reported when submitting a
response to the question.

Interface Testing

The interface in our design is within the PrairieLearn environment. Within each question, we have
a JSON, HTML, and Python file with works with each other. Then, we make an assignment that
combines multiple questions made. We test how they communicate and ensure the output works as
desired. This is done within the PrairieLearn environment, giving us feedback on which issues are
occurring within the questions.

Integration Testing

The most crucial connection path we have is making sure each individual question works on its own
and can be integrated with or without the emulator with no issues into one big assignment so that

the students going through the homework can quickly finish it. These will be tested by individually
reviewing the Unit testing for each question and ensuring proper formatting. After that, we will go
through the interface testing and connect the questions to an assignment. This, in turn will be
finishing the integration testing. The tools we will be using are what are available within the
PrairieLearn environment we are using.

System Testing

The system can be tested by testing homework assignments and ensuring they all work correctly
each time a question is attempted. This will ensure that when students attempt the homeworks, it
all works properly, and their learning time will be maximized. Many of the questions within the
homework are randomized, so testing the homework assignments multiple times will be beneficial
to ensure that the random value in a question doesn’t mess up the student.

Regression Testing

For regression testing, we will ensure that any new addition is contained in its container for each
question, homework, and class. Containerization is a tool that was implemented in PrairieLearn
previously and helps ensure that everything interacts with the necessary components. One critical
feature we need to ensure that PrairieLearn will continue to run is to have every system component
scalable. Scalability is required for this project because PrairieLearn is a constantly growing system
that needs to be adjusted for size and requests over time. After all, it is a requirement driven by
PrairieLearn requirements.

Acceptance Testing

To demonstrate the design requirements were met, we ensured that all pages made on the
PrairieLearn website match the initial format given. Part of this is ensuring that all code is in a
readable format and that each page has a consistent layout. To test this, we will manually review
each of our courses, assessments, and questions to ensure they match the existing framework. To
demonstrate that our functional requirements have been met, we will ensure that each question is
auto-graded to an appropriate level for a subset of randomized outputs. Finally, to show that our
non-functional requirements have been met, we will take a holistic view of the system and meet
with our advisor to ensure that the user experience and system properties have been provided. We
will involve our client in the acceptance testing by allowing them to use our site and give feedback
on each of the three above kinds of requirements. Specifically, we will meet with the client regularly
after deliverables have been completed and at the termination of development.

Security Testing

For integrity, the course information is retrieved using Git, so any changes are visible in the Git
history. To maintain confidentiality, we use encryption, and logins are handled using OAuthz. This
allows us to use the security measures of Google and Okta in our app to protect user information.
We also use HTTPS to encrypt traffic between the client and server, making it very difficult to see
what the user is doing. Finally, for availability, we plan to run multiple servers behind a load
balancer that can prevent our servers from being overloaded and ensure downtime is minimal. We
use SSH with public key authentication and multi-factor authentication to protect the server when
using a password and a firewall that only accepts traffic from SSH, HTTP, and HTTPS. We also use
NGINX to reverse proxy the PrairieLearn server and enable HTTPS, encrypting traffic between

client and server. NGINX is also set up to redirect all HTTP traffic to HTTPS, ensuring encrypted
traffic. Finally, all user-submitted code is compiled and run in separate docker containers isolated
from the rest of the system. This means that any and all user input is sandboxed and will be unable
to affect the rest of the system.

Black & White Box Testing

We performed internal and external testing to ensure that the homework and assignments met the
outlined requirements. Part of our internal testing involved analyzing and running the code for
each question to ensure efficiency and a standard shared format. To track our internal testing, we
split our team into groups to review the code developed by the other subgroups, ensuring each
group member reviewed their own and others' work. We continued internal testing until each
member had reviewed all homework and questions, deeming them ready for external review.

To perform external testing, we granted access to PrairieLearn for the TAs and professors of CPR E
288. We created a feedback form for the external testers to populate with questions, comments, or
concerns regarding any functional requirements that were not met. External testers were only given
student-view access to the course to ensure each homework and their questions were functionally
correct, and were only able to access the given course. External testing was additionally performed
to ensure the login and access to the course were safe and secure. The internal and external testing
cycle continued to help guarantee that the course was correctly implemented and efficiently used
all available resources.

e Results

From all of the testing we did, we found issues that opened our perspective to problems that we
could go in and mitigate that problem and future issues that would sprout from that problem. This
testing process worked very well for us and saved us a lot of headaches from running into constant
problems that could have been avoided.

Broader Context

Area Description Examples
Public health, Our project does not have any impact on the | Our project does not have any impact
safety, and public health, safety, or welfare of our on the public health, safety, or welfare
welfare stakeholders of our stakeholders
Global, cultural, | The project can reflect the values of the The implementation allows the users
and social faculty creating coursework. It will also on the faculty level to create
improve the learning experience of students, questions with a high level of
promoting participation. customization, allowing them to
express themselves in many ways.
Environmental | Our project does not have any impact on Our project does not have any impact
environmental factors. on environmental factors.

Area Description Examples
Economic This project has the ability to create jobs and | The product provides an opportunity
provide a product to make a profit. It also for the sale of a product to generate
trains new engineers who will join the revenue for the project owners. The
workforce in the near future. development of this project also
offers job opportunities for
developers.

Table 1. Design Context

Conclusions

We started this project to create a learning environment for the course CPR E 288. To do this, our client gave
us a framework and tasked us with creating a course in PrairieLearn that would sufficiently test student
knowledge over every assignment from the original course. Over the course of this first semester we have
successfully created content for nearly half of the homework assignments and set up secure production
environments for the content to be hosted on.

Through the second semester, we made a large amount of progress toward completing the assignments and
making them ready for student use. Multiple new technologies were implemented to create more variety
and better grading for the assignments. The next group that takes on this assignment can now take this
project to the next level and produce technology that makes the learning environment for 288 students even
more advanced. One thing the next group could implement is an online lab environment, which would take
a lot of work but would make students able to work in the lab when space in the lab is limited.

Appendix 1 - Operation Manual

Set-Up

To start with setup, you will need to have a version of Ubuntu 22.04. We have used Oracle VM virtualbox to
have Ubuntu installed. Along with this, you need docker installed to use the various containers we have
developed, as well as the necessary containers to run PrairieLearn itself. Along with this, having our
PrairieLearn course cloned allows you to see the progress we made. To see a more detailed explanation of
the setup, a link to detailed instructions can be found here.

A brief overview of the steps in order to the setup are as followed:

Install Oracle VM virtual box (install link here)
In the setup- make sure you select the type field as Linux, and select the version to be Ubuntu 22.04
LTS (Jammy Jellyfish)
Go through the setup steps with launching the VM.
After setup steps, install docker, this link takes you to the correct commands to input into the
terminal, or simply input these commands:

o sudo apt-get update

https://sdmay24-33.sd.ece.iastate.edu/documents/PrairieLearn%20Set-Up%20Guide.pdf
https://www.virtualbox.org/wiki/Downloads
https://docs.docker.com/engine/install/ubuntu/

sudo apt-get install ca-certificates curl
sudo install -m o755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o
/etc/apt/keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc
echo \ “deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc]
https://download.docker.com/linux/ubuntu \ $(. /etc/os-release && echo
"$VERSION_CODENAME") stable" | \
o sudo tee /etc/apt/sources.list.d/dockerlist > /dev/null
o sudo apt-get update
e After docker is installed, you should clone the course repository
o To use our groups sdmay24-33 CPRE288 course, click here
e There are a few different ways to run a course
o To run an example course made by the PrairieLearn devs, run the command below
m sudo docker run -it --rm -p 3000:3000 prairielearn/prairielearn
o To run your own course, run this command, and replace REPLACE_ME with your directory
to the course
m sudo docker run -it --rm -p 3000:3000 -v $HOME/REPLACE_ME:/course
prairielearn/prairielearn
o To run our groups sdmay24-33’s CPRE288 course, run this command to get all necessary
docker containers
m sudo docker run -it --rm -p 3000:3000 -v
/var/run/docker.sock:/var/run/docker.sock -v $HOME/pl_ag_jobs:/jobs -v
$HOME/sdmay24-33:/course -e HOST_JOBS_DIR=$HOME/pl_ag_jobs
prairielearn/prairielearn
m To run this course, make sure you create a directory pl_ag_jobs in the root
directory, and the sdmay24-33 folder is located in the home directory, or change
the command above to locate the correct directory location of the cloned course.

Demo

To see a demo video, click here

To see our server, click here (This shows a student view if you log in through Google or Okta). You must be
on the lowa State WiFi network or VPN to access the site.

Student View:
As a student, you can see the list of homework assignments, when enrolled in the class.

e C(licking into any of the homework assignments will pull up another menu, which shows a list of all
the questions within the homework assignment.
Clicking into a desired question will allow you to work on the question.
When you hit Save & Grade, the grading process will happen, and depending if the question is a
manually or automatically graded question, the process will start.
o Ifitis a manually graded question, the server will save the response for the instructor or TA
to manually insert a grade.
o Ifitis an auto-graded question, then you will receive your score right as you submit it.

https://git.ece.iastate.edu/sd/sdmay24-33
https://sdmay24-33.sd.ece.iastate.edu/documents/sdmay24-33_Final_Demo.mp4
https://cpre288-pl-f2023.ece.iastate.edu/pl/login

Developer View:

As a Developer, If you are trying to make changes to the course, you will need to:

locally run PrairieLearn with the setup steps mentioned above.
After running your course, and going to http://localhost:3000, you will need to hit the load from

disk button on the top right corner. This will load the course you listed in the directory, through the
PrairieLearn docker container.

Clicking into the course will bring you to the Course Instances, where you can either access the
course where Assignments are listed as a whole, or click into a different tab.

If you are trying to make a new question, you go into the Questions tab on the top.

Here, all questions made are listed, and if you want to make your own question, simply click + Add
Question.

When making a new question, you want to change the QID to the way you desire to name the
question, and edit the info.json.

o In this info.json, you can change the Title to add a title for the question (We usually have
that the same as the QID), and add tags which adds a tag to the question, such as who
developed the question, or when the question was starting to be developed.

Changing to the Files tab is where you can customize the question as desired.

The question.html file is where you write the HTML code that allows you to add elements which
appear on the site visually for the students to see.

The server.py file is where you write the scripts to randomize questions, autograde questions, and
add any other necessary logic the question needs to operate.

Testing

To test your questions, PrairieLearn lets developers get a preview of the question, by clicking the Preview
tab. Here you can see what everything looks like, and hitting Save & Grade will allow you to see the output
just as students would. Here, you will also get debugging errors, in any of the json, html, or python files. On
top of this, if these errors don’t let the question pop up, then the error will display and be put into the Issues
tab, with a log of what question, as well as the error message for you to debug. Past this, peer reviews to try
and break or find errors in questions is another vital testing point in order to get a question working as

desired.

Appendix 2 - Alternative/Initial Version of Design

Design 0 (Initial Design)

http://localhost:3000

End User

l

PrairieLeamn

l

Docker

l

Simulation Simulation Simulation
Emulator Emulator Emulator

Figure 2. Initial Design Diagram

The initial design uses PrairieLearn as the interface between the simulations and the end user.
PrairieLearn uses Docker containers for each question and the code given by the user is put into the
emulator / CyBot simulation. To implement this, we will utilize the existing PrairieLearn framework
to create questions through the UI and built-in text editors using JavaScript and Python. These
questions are then published to students through the framework’s implementation. We will then
source an emulator and make any necessary modifications to integrate it onto the PrairieLean site.
This emulator will simulate microcontrollers and allow questions to be made that utilize this. The
emulator will aim to allow students to upload their code and run it on what would be the
microcontroller and see its behavior. Our design is intended to create a better learning experience
for students throughout CPR E 288. The questions and auto grader create a more engaging learning
experience that will help grasp lecture material. The emulator then helps students in the lab,
making it easier and faster to test code without needing a physical CyBot and testing space. Both
are used increasingly throughout the course as the labs and lecture material become more complex.
The current design satisfies these functional requirements as it lays out a plan to finish the auto
grader, create more questions for students, and create an improved emulator for the lab.

This design was revised to better account for the design complexity added by the server and
autograder. What led to this iteration was a more thorough understanding of the requirements for
PrairieLearn and research into the design of production servers. The significant changes from
Design o is the addition of security features. These include the firewall, Nginx, and SSH security
changes.

Appendix 3 - Other Considerations

This project presented many challenges and learning experiences for us. We learned many things
about developing code in a collaborative and innovative environment, especially for those of us
who had limited coding experiences.

Appendix 4 - Code

PrairieLearn Course Code:

https://git.ece.iastate.edu/sd/sdmay24-33

Edited PrairieLearn Code with Okta Integration:

https:/Jeithul mvriath/Prairiel

Original PrairieLearn Repository:

https://github.com/PrairieL.earn/PrairieLearn

ARM Assembly Auto-grader Docker Image Source:
https://github.com/myriath/PrairieL.earnARMGrader

QEMU Tiva TM4C123GH6PM Board Implementation:
https://github.com/myriath/gemuTIVA

https://git.ece.iastate.edu/sd/sdmay24-33
https://github.com/myriath/PrairieLearn
https://github.com/PrairieLearn/PrairieLearn
https://github.com/myriath/PrairieLearnARMGrader
https://github.com/myriath/qemuTIVA

